
erase-install: A Tool for Upgrading
and Reinstalling macOS
GRAHAM PUGH

UP NEXT

Graham Pugh
Senior Client Engineer - Apple Services

ETH Zürich

@GrahamRPugh

@GrahamRPugh

@grahampugh

grahamrpugh.com

My name is Graham, I'm from Lancashire originally, but I've spent the past 6 years in Switzerland working in the central IT Services of the Swiss Federal Technical
University in Zürich.

I'm going to talk today about a project I created, called erase-install.

Erase-install is a tool for erasing or reinstalling macOS with a single command or click. It brings together other open-source tools to perform a workflow which will
download a macOS installer and use it to perform a silent reinstallation. The only user interaction required is on Apple Silicon Macs, where we need the user's password.
That's not required on Intel Macs.

In this screen recording, you're seeing the terminal output behind the user dialog because that's how I invoked the script, but if you're running this from a management
tool, your users will only see the dialogs.

The script is agnostic to which management tool you're using, your tool just needs to be able to run a script or install a package to use it. I'm aware of it being used from
Jamf Pro, SimpleMDM, Jamf Now, WorkspaceONE, InTune, Munki and Mosyle.

We'll look again at the video later when I've given more context.

Behind the scenes, erase-install is a big, long bash script. And yes, big long bash scripts are not considered best practice... But for many of us ordinary Mac Admins who
aren't software engineers, it's just natural for us to start to approach solving a problem by scripting in bash, and then before we know it, it's 3000, 🍎 5000, 7000 lines
long...

And just like Kevin White's SUPERMAN and Armin Briegel and friends' Installomator...

... erase-install has got a lot of use and attention over the past couple of years. 🍎 - much more than I could have anticipated. That's because, regardless of best
practices, these are the tools that have been shared publicly and have proven themselves able to solve problems being faced by large numbers of us Mac admins.

So, in this talk I want to achieve three things:
🍎 I'll give you all a short synopsis of the erase-install project,
🍎 I'll look forward to the time when we don't need it anymore, and,
🍎 as a representative of ordinary Mac admins, I'll share what experience I have gained from maintaining an open source project that has built up a relatively large user
base.

• Why erase-install?

• Why erase-install?

• But, seriously, why still erase-install?

• Why erase-install?

• But, seriously, why still erase-install?

• Why open source?

Once upon a time...

To talk about how this project came about, let's go back to the beginning...
🍎 iOS has had an "Erase All Contents And Settings" option in the System Settings for years. Back in the early 2010s, we could only dream about having this feature on OS
10, 🍎 but it was ok, because we had good redeployment workflows using NetBoot, DeployStudio and imaging.

Once upon a time...

Once upon a time...

But this started coming undone in 2017 when Apple introduced T2 Macs, starting with the iMac Pro. 🍎 NetBoot was killed, and imaging started to become unstable.

The Device Enrollment Program became our new setting up workflow. But for redeployments, we still had to get a clean OS on the system. Back then, 🍎 getting that
magical, elusive Remote Management screen was extremely hit-and-miss. Reinstalling from the Recovery partition would not clear the old DEP record, so enrolment was
not attempted afterwards.

Internet Recovery was the best solution for us, but that meant even more clicks, even slower, and no way to automate it.

However, when El Capitan was released in 2015, we had already got the first glimpse of what would become a completely new option for us to install OS 10.

The El Capitan installer was distributed as an app...

...And inside the app bundle, in the Resources folder, 🍎 Apple added a command line tool called startosinstall. Every version of macOS since than has included this tool.

At this point, startosinstall wasn't massively useful. It couldn't be run completely silently as you needed to agree to the license.

sudo '/Applications/Install OS X El Capitan.app/
Contents/Resources/startosinstall'

--volume /Volumes/Untitled

--applicationpath "/Applications/Install OS X El
Capitan.app"

--license

--usage

But with macOS Sierra, the addition of the agreetolicense option, and the undocumented 'nointeraction' option, meant we could run the command unattended from a
script. 🍎 By the way, that latter one isn't needed anymore, but back then it was required.

sudo '/Applications/Install macOS Sierra.app/
Contents/Resources/startosinstall'

--agreetolicense

--nointeraction

sudo '/Applications/Install macOS Sierra.app/
Contents/Resources/startosinstall'

--agreetolicense

--nointeraction

Startosinstall was still not relevant for redeployments, until February 2018, when Apple unusually published a support article 🍎 which announced a new upcoming option
for the startosinstall tool, called eraseinstall.

This new option allowed us to completely wipe the system drive and install a fresh macOS system in a single command. 🍎 And it could also be done silently with the no
interaction flag.

sudo '/Applications/Install macOS High
Sierra.app/Contents/Resources/startosinstall'

--eraseinstall

--newvolumename "Macintosh HD"

sudo '/Applications/Install macOS High
Sierra.app/Contents/Resources/startosinstall'

--eraseinstall

--newvolumename "Macintosh HD"
--agreetolicense

--nointeraction

I just want to emphasise that the startosinstall binary is only present in the installer app, not on the system itself, and it cannot be run from the recovery partition. So to
use startosinstall to reinstall the system, first of all you have to download the installer, and 🍎 only then can you run startosinstall.

During the beta phase for that spring release of macOS High Sierra, 10.13.4, I started trying to write a solution that would use this new feature to provide a one-click,
start-to-finish Erase-All-Contents-And-Settings button in our Jamf Pro Self Service.

Two months earlier, Greg Neagle had published a script for downloading macOS installers from Apple's software catalogs, which he called installinstallmacos.py.
Coincidentally, Rich Trouton blogged about the script at the same time that the first 10.13.4 beta was released.

I adapted this script so that it could automatically give me the latest installer that was compatible with the system that I ran it on, so that I could run it unattended.

Once I got this working, I wrote a quick wrapper script in bash which would grab my version of the installinstallmacos script, 🍎 run it to grab the latest macOS installer,
and then call 🍎 startosinstall with the eraseinstall option to wipe and reinstall the device.

I threw in some jamfHelper user dialogs so the user would first see when the installer was downloading and then 🍎 block the screen with a full screen dialog when the
preparation for erasing began. I uploaded the script to our Jamf instances and 🍎 created a self-service policy, which in effect became that one-click Erase All Contents
And Settings button we'd been wanting for years.

I blogged about the new feature when 10.13.4 was released, and uploaded my script to git, in case it was useful to anyone else, so had to think of a name for it.

I called the script erase-install, because that is all it did at the time.

I hadn't thought of using startosinstall for one-click upgrades until that point, but it was obviously useful to be able to offer a method of upgrading without requiring
admin rights and without having to manually package up the installer. And it was hardly any additional code to the existing script to build a reinstall option into the erase-
install script so that we could have a one-click Upgrade button in our Self Service.

So, calling the script erase-install was already a bad idea...

sudo softwareupdate -ia

So, now we had a good solution for upgrades and redeployments.

For software updates we had our tried-and-tested command for forcing updates via a script using the softwareupdate command. 🍎 But this also hit a problem with the
T2 Mac...

T2 Macs sometimes had to be shut down instead of restarted for some updates. Apple added the 🍎 -R option to the softwareupdate command, which would figure out
whether a shut down was necessary. But that wasn't great, because users could potentially run this at the end of the day, and then arrive at their desk with the computer
mysteriously switched off, and have to wait perhaps another 30 minutes for the update to finish.

🍎 On the other hand, installing the new version using the full installer with startosinstall didn't need this shutdown.

sudo softwareupdate -ia

sudo softwareupdate -iaR

sudo softwareupdate -iaR

Furthermore, the software update command started getting, just, unreliable. Updates would fail to show, 🍎 or the update would fail to install at all, or the system would
end up in a boot recovery state. 🍎

Greg Neagle, who I always trust to make wise decisions, lost patience with Apple in 2020 and 🍎 removed the softwareupdate command from Munki for upgrades and
updates that require a restart, because of this unpredictability.

But startosinstall was still reliable, so using erase-install for updates was a predictable workflow, even if it's always seemed like overkill to use a full installer to do a minor
update.

At WWDC 2020, things changed again, as Apple announced Apple Silicon chips. 🍎 The Apple Silicon DTK was released, along with the beta version of Big Sur.

We found out that Apple Silicon computers required a Volume Owner to supply their password via a graphical prompt to unlock the System Volume, making an unattended
update impossible.

Soon, Apple finally gave us a built in Erase All Contents & Settings tool! So the original use case of the erase-install script was well and truly Sherlocked!

🍎 when Erase All Contents And Settings works, that is...

Still, with a built in erase feature and with all the new restrictions introduced with Apple Silicon, you'd think use of erase-install would have died away. Quite the opposite
proved the case.

In Big Sur, startosinstall gained new options to allow us to enter the account name and password for Apple Silicon computers - unfortunately in plain text.

But at least it didn't need to be an admin password, just a Volume Owner, and we could control when we ask for the user's password in the workflow, and how to present
the question to the user. So I added graphical prompt for the user's password to erase-install.

sudo '/Applications/Install macOS Big Sur.app/
Contents/Resources/startosinstall'

--user fredbloggs

--stdinpass <<< plaintextpassword

Because softwareupdate was getting less and less reliable, and also perhaps because Jamf's previously recommended macOSUpgrade script stopped getting developed at
this point, use of erase-install seems to have been ballooning ever since.

I've also worked on a bunch of improvements and updates in the past two years as the usage has increased, which may have also caused usage to increase. But the
functionality has not fundamentally changed between the release of Apple Silicon and today.

So, that's the history of this project. Let's go back and look at what the process looks like today on an Apple Silicon Mac.

If you download the 🍎 package that I've provided in the GitHub repo, this includes all the 🍎 dependencies you'll need to use the script, namely Bart Reardon's swiftDialog
app and Nindi Gill's mist-cli tool, which has now replaced my version of installinstallmacos.

Alternatively you can run the script directly and it will download Mist and SwiftDialog when it needs them. You can even run a curl command to download the script and
pipe in the arguments you want to use, which is what I did in the screen recording you saw at the beginning, that I'm going to talk you through now.

curl -s https://raw.githubusercontent.com/
grahampugh/erase-install/main/erase-install.sh
| sudo bash /dev/stdin <arguments>

VIDEO
We're going to run the reinstall option here to upgrade from Monterey to Ventura. As I said before, Terminal won't be seen when running from your management system,
but here it allows you to see more of what's happening in the background.

Of course this recording has been reduced from a good half hour or more down to 2 minutes.
🍎 The user is asked for their password which is required on Apple Silicon.
It then downloads Mist and swiftDialog if they are not already on the device.
Erase-install tells Mist to look for the latest available macOS installer, because we did not specify a version to download. In this case it's 13.3.1.
A dialog shows the percentage progress of the download.
Once downloaded, Mist compiles all the components that were downloaded to make the installer app, which creates a DMG, and then the installer is moved into place in
the Applications folder.
Once finished, erase-install takes over again and invokes startosinstall to reinstall macOS on the device.
This time a full-screen dialog shows the percentage progress of the OS preparation phase prior to download. This prevents the user from continuing to work.
Once the preparation is complete, the machine automatically reboots and after login we can see that the machine is now on Ventura, although in the VM I recorded the
login screen retained the Monterey background during the first login.

erase-install.sh --reinstall / --erase

As you saw, just specifying the reinstall or erase options is enough. However, there are a whole bunch of additional options you can use, for example 🍎 to specify which
installer you download, 🍎 to replace outdated installers,

erase-install.sh --reinstall / --erase

-------- - ---- -- - --------- ------

erase-install.sh --reinstall / --erase

--sameos / --os 13 / --version 13.3.1

--update / --overwrite /
--replace-invalid

Let's look at the end user experience.

to check for power,

Let's look at the end user experience.

--check-power
--power-wait-limit XX

whether to ask for user confirmation

--confirm

To add a delay to the reboot to allow users to carry on working during the prep phase, and so on.

--rebootdelay 300

I've been showing the dialogs in English, but the text is available in 5 language depending on the language set on the device. 🍎 Fortunately, I have had a lot of help from
native speakers, so hopefully these aren't too bad!

🏴󠁧󠁢󠁥󠁮󠁧󠁿🇩🇪🇫🇷🇳🇱🇪🇸

🏴󠁧󠁢󠁥󠁮󠁧󠁿🇩🇪🇫🇷🇳🇱🇪🇸

To see all possible options, just add --help.
🍎 The wiki also has pretty much everything you could possibly need to know.
🍎 The Slack channel is there if you've read the wiki and still not sure what to do. And of course if there's time for questions at the end, or if you see me during the rest of
the conference, 🍎 I'll be happy to answer.

erase-install.sh --help

github.com/erase-install/wiki

erase-install.sh --help

github.com/erase-install/wiki

#eraseinstall

erase-install.sh --help

github.com/erase-install/wiki

#eraseinstall

erase-install.sh --help

However, Erase-install shouldn't really need to exist.

Let's look at what Apple have been doing to try and plug some of the holes that erase-install has been filling.

softwareupdate  
--fetch-full-installer

--full-installer-version 13.3.1

All the way back in the release of macOS Catalina, a new flag for the softwareupdate command was added named "fetch-full-installer". This allowed the download of the
full installer directly from Apple's softwareupdate catalog without need for a script like installinstallmacos.

Unfortunately, despite a few improvements every year, it has never been as reliable as the methods used in installinstallmacos or Mist. For some organisations it can be
useful though - for one thing, it honours MDM update deferrals, and for another, it can make use of a caching server.

I've built this into the erase-install script as an alternative option for those that want to use it but still wish to make use of the dialogs that erase-install offers.

Another very useful development that came with the release of macOS Ventura is the ability to upgrade from an older major macOS using a delta update from the Software
Update pane without needing admin rights. This should make upgrades easier.

Of course, that's only useful if Software Update gets reliable again. Some of the problems we've had with the softwareupdate command hanging over the last 2 or 3 major
macOS versions are supposedly fixed in macOS 13.3. We still need more data on that one, but hopefully it's going to start to be reliable enough again to risk using it in
scripts once more.

MDM commands are also now available to enforce software updates, including an option to allow the user to defer the update a set number of times.

I don't think these commands are robust enough to rely on them yet, and the user experience of a full enforcement is not yet acceptable. 🍎 Kevin's SUPERMAN script is a
great attempt at improving that user experience, but the fact that it takes over 7500 lines of bash code to achieve it tells you how far away from a satisfactory built-in
solution we are currently.

So, we are sadly not yet at a stage where Nudge, erase-install and Superman are becoming obsolete. We can only hope that changes announced in WWDC '23, mean we
won't need these tools anymore... watch this space, I guess!

Alright! On to the last part of this talk, which is aimed at MacAdmins who perhaps have not yet embarked on sharing their own code. I'm going to use erase-install as an
example of what you might face if you make a script available for use by others, and it starts to get used a lot. I'm sure my experiences are similar to many of our
colleagues.

So you've written a cool thing and you think others might find it useful. Your company says it's OK to share it.

But what are the consequences? 🍎 Is it going to generate extra work? Will other people help? Will it grow into something more than originally planned? And what happens
if you don't want to continue maintaining it?

• How much (extra) work?

• Bug fixing

• Supporting others

• Feature Requests

• Setting boundaries

• Contributions

• Why open source?

• Know when to stop

Just putting a script on GitHub doesn't mean any extra work. I have lots of scripts on GitHub that probably nobody else is using.

Others might get used but they're simple and just work, so need little documentation or support.

However, erase-install is a bigger, more complex thing that has had to keep evolving. It was clumped together as a quick idea and probably not particularly well written or
documented. Nonetheless, it started to get found and used.

And when people started using it, they started asking about it in the Mac Admins Slack, Jamf Nation, and on the GitHub page.

And of course, just like at work, if people are asking for help with something I built or designed, or reporting things as broken, I can't ignore it.

Slack channel #eraseinstall

It has been easier to help, once I adopted a channel in the MacAdmins Slack. Monitoring for keywords that relate to the project gave me notifications whenever somebody
mentioned it. And I could just point them to the channel, from where there are an increasing number of people who have been helpful in answering questions by
newcomers.

The erase-install channel has grown to over 1200 members, and averages 120 messages a week. Just to say, it can be good to turn off the notifications in the evening,
especially when you live in Europe, since a lot of the traffic comes from North America...

Keeping on top of the questions can be challenging at times. Sometimes it can feel like I need a Helpdesk. [click]

Don't be surprised that people don't always look for documentation before they ask for help. And never underestimate how complete and explicit the documentation
needs to be.

Making an FAQ page has been very helpful for me. It's far quicker to just give somebody a link than to type the same answer out over and over.

No, recon won't
work here. Security software

blocking it?

No you cannot use it
to downgrade!

GitHub Issues / Discussions

I've also found it to be a good idea to ask people to open a GitHub issue for any sort of bug or question that can't be answered immediately, otherwise it can be too hard
to keep on top of it all.

🍎 GitHub Discussions are also useful, because not everyone is in Slack.

GitHub Issues / Discussions

An inevitability about sharing a project is that it might not work in different environments to your own. People also have their own ideas about how the thing should work.
Both these aspects become more significant as the usage grows.

If you choose to accept feature requests, they can be the most time-consuming form of support.

I've found it essential to ask people to record their Feature Request in the GitHub repo so that I could keep a good overview of the things to consider when I next have
time to work on the project.

Adding labels to them also helps break them down into things you can go ahead with versus those things that require further input from the requester.

✓ Good idea?

✓ How niche?

✓ Relevant to original goal?

✓ Relevant to your job or

organisation?

✓ Too much work/complex?

✓ Ongoing support &

maintenance?

There are important questions I've had to ask myself when getting feature requests:
-Do I agree that the feature request is actually a useful improvement?
- Is it going to help anyone apart from the one person asking for it?
- Is it relevant to my original reason for creating the project?
-As I'm maintaining the project at work, is the request relevant to my organisation's requirements?
-How difficult and complicated is it going to be to design the change, and is it going to make the overall project more difficult to understand?
-Am I interested enough in the feature to support it in the future if it stops working for some reason?

Similar considerations apply to Pull Requests. That's where somebody has discovered a bug or has a feature request, but instead of just asking you to fix it, they update
the code themself and only ask you to merge in their changes. Luckily, Git is very clever at figuring out how to safely merge their code into yours.

Pull Requests tend to happen more with shell script code, because far more people understand it than other scripting languages.

I've found it really important to make sure I understood the code changes before accepting and merging the pull request. 🍎 . If you don't understand the code, you're just
building problems into your project that may come to haunt you later...

Also perhaps it's obvious, but - you don't have to accept pull requests! If you don't want to accept it, that person can still maintain a fork of the project with their changes
in it - they're still benefitting from your work, and they will be able to merge any changes you make in the future into their own fork.
🍎 Plenty of people are using their own fork of erase-install.

The same is true if you decide that you cannot or don't want to continue maintaining the project.

🍎 There are all sorts of legitimate reasons why you might want to stop maintaining some open source project.

Again, people can make their own fork and maintain it themselves, if they still have a use for it when you don't. Somebody can take the project over if they think it's still
useful.

• No longer useful in your job or organisation

• You change jobs

• You just don't have time

• You can't fix it

• Somebody wrote a better tool for the job

• Sherlocked by Apple

Just make it clear in the README of the repo that your version is no longer maintained, 🍎 and people will slowly move on.

If you open source your code...

To summarise:
- expect more work than if you had not published the thing
-You can mitigate that a bit by taking the time from the beginning to create good documentation
-Make a Slack channel if you're starting to get questions about it.
-Create FAQs as you answer questions - this can save you repeating yourself over and over.
-Keep on top of any problems by encouraging people to record it in your GitHub repo.
-Keep the code simple and readable, even if it might seem less efficient. This increases the chances that people will send you pull requests and answer their own

questions.
-This is a really helpful community in my experience. You can expect a lot of thanks and a lot of help. So don't be shy in sharing your code!

If you open source your code...
• Expect more work

If you open source your code...
• Expect more work

• Document early and in detail

If you open source your code...
• Expect more work

• Document early and in detail

• Make a Slack channel

If you open source your code...
• Expect more work

• Document early and in detail

• Make a Slack channel

• Create FAQs

If you open source your code...
• Expect more work

• Document early and in detail

• Make a Slack channel

• Create FAQs

• Encourage Issues, FRs, PRs in your repo

If you open source your code...
• Expect more work

• Document early and in detail

• Make a Slack channel

• Create FAQs

• Encourage Issues, FRs, PRs in your repo

• Make your code readable (if you want contributions)

If you open source your code...
• Expect more work

• Document early and in detail

• Make a Slack channel

• Create FAQs

• Encourage Issues, FRs, PRs in your repo

• Make your code readable (if you want contributions)

• Expect great feedback and support

That last point is the main reason I recommend open sourcing your code.

🍎 I could never have anticipated the amount of thanks I've received from people using erase-install.

But also, because I've received so much help from this community, it's only fair to give a little back, whether that's in the form of sharing code or answering questions.

One last thing. Unlike me, take some time to think of a good name for your project. Preferably one that doesn't mean anything. Something like Munki, Kmart, Mist,
Superman, Sal. A descriptive name can quickly become a bad idea if you add things!

ddddddddddddddddddddddddddddddddddddddd
aaaaaaaaaaaaaaaaaaaaaaa

That's it from me, thank you for listening!

Photo: ETH Zürich / Gian Marco Castelberg

Thank You!

