
AutoPkg everything

Graham R Pugh

Senior Client Engineer, IT Services

ETH Zurich

MacSysAdmin Virtual Conference, October 2021

Hello Sweden! And thank you to Patrik, I'm honoured to speak today at my first MacSysAdmin conference, albeit it in the cloud.

My name is Graham Pugh, I'm a Mac deployment engineer from the UK, and I've now been living in Switzerland for over 5 years, and working at ETH Zurich for 4 and a half of those.

How ETH Zürich extends the
AutoPkg framework beyond
uploading packages

The goal of my presentation today is to talk about why we use AutoPkg, and how we have extended our use of the AutoPkg framework beyond the upload of packages to a more complete deployment, testing, staging and multi-tenant distribution workflow.

Although we are a Jamf Pro shop, I hope this will be of interest to any of you involved in package deployment to Macs, and perhaps inspire some of you to try your hand at creating your own AutoPkg processors when the supplied ones don't fit all of your needs.

For those of you that don't know, 🍎 ETH Zurich is the Swiss Federal Institute of Technology.

We are considered the best university in continental Europe.

Eidgenössische

Technische

Hochschule

In Switzerland, everything is federated. The country is divided up into very autonomous cantons

And the cantons are divided into quite autonomous districts.

And ETH itself is no different. Our professors operate on a very autonomous basis, as do our institutes and departments.

IT support tends to be organised at a departmental or institute level. Central governances and services exist of course, but often on a consensus basis, with departments able to set their own standards and processes, and to choose whether to use centrally offered services, or provide their own solutions. On the
technical side, I believe only network and telephony are entirely centralised.

There are a few thousand managed Apple devices at ETH Zurich, spread across most academic departments as well as central services.

I work for a division of the central IT Services, 🍎 in a small team of 3, with my colleagues Max and Kati.

We offer various services as well as Apple device expertise to all sections of the university, and one of our primary goals is to make software available to departmental IT support teams in a deployable form, and to provide a delivery mechanism for that software.

Our organisation's distributed internal structure means that each department requires their own individual admin environment. In this respect, we operate somewhat like an MSP. Therefore, our automation needs are very high, and multi-context capabilities of management solutions are required.

🍎 As I was joining ETH, the process had just begun of transitioning to using Jamf Pro for our package deployment and burgeoning MDM requirements, a decision based largely on the API and multi-context capabilities of Jamf Pro.

🍎 To get their own admin environment, each customer was to get their own Jamf Pro instance. By now, this has grown to over 35 instances.

ETH Zurich Apple Services

ETH Zurich Apple Services
Katiuscia Zehnder
Max Schlapfer
Graham Pugh

ETH Zurich Apple Services
Katiuscia Zehnder
Max Schlapfer
Graham Pugh

ETH Zurich Apple Services
Katiuscia Zehnder
Max Schlapfer
Graham Pugh

Package deployment workflow

The design our software deployment workflow in Jamf Pro, is probably the same as many of you:

🍎 Downloading, verifying and repackaging the software installers into a deployable form.

🍎 Uploading the package into Jamf Pro, and creating the necessary policy and smart group so that there is a self service item for our testers.

🍎 The people doing the testing have to do that manually - we don't have any automated software testing at present

🍎 And then when that package is ready for release, we need to create or update our production policies and smart groups with the new package, and remove the testing policy.

🍎 For us, this is complicated by the need to repeat everything on each Jamf instance

๏ Check for a new version of a software
๏ Download new version
๏ Verify security
๏ Repackage as necessary

Package deployment workflow

๏ Check for a new version of a software
๏ Download new version
๏ Verify security
๏ Repackage as necessary
๏ Upload package to Jamf Pro
๏ Create or update policies and smart groups targeted at testers

Package deployment workflow

๏ Check for a new version of a software
๏ Download new version
๏ Verify security
๏ Repackage as necessary
๏ Upload package to Jamf Pro
๏ Create or update policies and smart groups targeted at testers
๏ Testers do the tests

Package deployment workflow

๏ Check for a new version of a software
๏ Download new version
๏ Verify security
๏ Repackage as necessary
๏ Upload package to Jamf Pro
๏ Create or update policies and smart groups targeted at testers
๏ Testers do the tests
๏ Create or update policies and smart groups available to  

 production computers
๏ Delete the testing policies

Package deployment workflow

๏ Check for a new version of a software
๏ Download new version
๏ Verify security
๏ Repackage as necessary
๏ Upload package to Jamf Pro
๏ Create or update policies and smart groups targeted at testers
๏ Testers do the tests
๏ Create or update policies and smart groups available to  

 production computers
๏ Delete the testing policies

Package deployment workflow

Before migration to Jamf Pro, my colleagues and my predecessor were already automating parts of this workflow with in-house build scripts, though there was no API for importing packages into the deployment system.

I came into the organisation having used AutoPkg at previous organisations with Munki.

With Jamf Pro, the opportunity to use the API, and the existence of JSSImporter to upload packages, was a big impetus for us to start to benefit from using AutoPkg recipes and tap into that huge amount of work already being done in the Mac admin community.

๏ Check for a new version of a software

๏ Download new version

๏ Verify security

๏ Repackage as necessary

๏ Upload package to Jamf Pro

๏ Create or update policies and smart groups targeted at testers

๏ Testers do the tests

๏ Create or update policies and smart groups available to  

 production computers

๏ Delete the testing policies

Package deployment workflow

{AutoPkg

For the downloading and packaging of installers, we could in many cases use existing AutoPkg recipes, and we starting writing our own recipes for whatever apps didn't already have a recipe.

🍎 For uploading the package to Jamf Pro for testing, we did have to write our own JSS recipes because the standard templates were not right for us, but at least this was often just a small change from the ones that the community had already made.

🍎 But there was no obvious, existing method for creating or updating production policies and smart groups available from the community. The jamf_helper API tool was designed to do this but only worked within the constraints of standard JSS recipe design. Most of the community do this part of the workflow
manually, or skip the testing phase completely.

And Jamf's Patch Management solution promised much, but turns out to be complex to maintain, and is only able to update applications on clients, not to install them afresh, so doesn't negate the need to create production policies.

๏ Check for a new version of a software

๏ Download new version

๏ Verify security

๏ Repackage as necessary

๏ Upload package to Jamf Pro

๏ Create or update policies and smart groups targeted at testers

๏ Testers do the tests

๏ Create or update policies and smart groups available to  

 production computers

๏ Delete the testing policies

Package deployment workflow

{AutoPkg

{AutoPkg + JSSImporter

๏ Check for a new version of a software

๏ Download new version

๏ Verify security

๏ Repackage as necessary

๏ Upload package to Jamf Pro

๏ Create or update policies and smart groups targeted at testers

๏ Testers do the tests

๏ Create or update policies and smart groups available to  

 production computers

๏ Delete the testing policies

Package deployment workflow

{AutoPkg

{AutoPkg + JSSImporter

{?

Software delivery through Jamf Pro

When discussing the transition to Jamf with our customers, we knew that we had to do provide more than just uploaded packages to Jamf. Many admins are sole operators who couldn't manually create all the policies and smart groups required themselves, and, on the other hand, our small team can't handle all
the scoping to computers on behalf of each and every IT support team - most didn't want that anyway.

It also became apparent that a single deployment strategy was not going to be enough.

🍎 Some groups wanted to use the Self Service kiosk application for installs, 🍎 some for updates.

🍎 Others wanted to automatically deliver software to their users, which was closer to how things had been done before.

Some wanted a combination of both options, for example self service install but automatic update.

And their needs were sometimes different for each software title.

 Self Service install

Software delivery through Jamf Pro

 Self Service install
 Self Service update

Software delivery through Jamf Pro

 Self Service install
 Self Service update
 Auto-install
 Auto-update

Software delivery through Jamf Pro

 Firefox (Testing)

 Update Firefox

 Auto-install Firefox

 Auto-update Firefox

 Install Firefox

 Uninstall Firefox

 Trigger-uninstall Firefox

Jamf policies

 Firefox test users

 Firefox test version installed

 Firefox users

 Firefox auto-install

 Firefox auto-update

 Firefox current version installed

 Firefox installed

Jamf smart groups

TESTING

PRODUCTION

To give our customers all those options, we designed a set of policies and smart groups for each software title.

I won't go into an explanation of how this all connects together as it's very Jamf-specific and would take too long. I have a blog post about it which I'll link to at the end. The important part of this design is that there is a separation between 🍎 the items that need to be updated when a new version is released to test
or production,

🍎 And the items that our customers need to edit themselves in order to scope software to devices. 🍎

 Firefox (Testing)

 Update Firefox

 Auto-install Firefox

 Auto-update Firefox

 Install Firefox

 Uninstall Firefox

 Trigger-uninstall Firefox

Jamf policies

 Firefox test users

 Firefox test version installed

 Firefox users

 Firefox auto-install

 Firefox auto-update

 Firefox current version installed

 Firefox installed

Jamf smart groups

TESTING

PRODUCTION

 Firefox (Testing)

 Update Firefox

 Auto-install Firefox

 Auto-update Firefox

 Install Firefox

 Uninstall Firefox

 Trigger-uninstall Firefox

Jamf policies

 Firefox test users

 Firefox test version installed

 Firefox users

 Firefox auto-install

 Firefox auto-update

 Firefox current version installed

 Firefox installed

Jamf smart groups

TESTING

PRODUCTION

 Firefox (Testing)

 Update Firefox

 Auto-install Firefox

 Auto-update Firefox

 Install Firefox

 Uninstall Firefox

 Trigger-uninstall Firefox

Jamf policies

 Firefox test users

 Firefox test version installed

 Firefox users

 Firefox auto-install

 Firefox auto-update

 Firefox current version installed

 Firefox installed

Jamf smart groups

TESTING

PRODUCTION

We designed this with automation in mind. Creating all these items in Jamf manually for each software title, plus any other necessities like scripts and extension attributes - even the items that don't need to change once created - would be a mammoth and frankly impossible task across so many Jamf instances for
each of our hundred plus software titles.

We absolutely had to automate it all. So we did. Some things have evolved, some are pretty much how originally designed.

This presentation is about how we did it, ultimately involving AutoPkg for everything.

JSSImporter
Firefox.jss

Before I go on to talk about those workflows, it's important to mention one of the major things that has evolved while scaling up our service.

We started off heavily using JSSImporter, and writing JSS recipes. Early on though, I needed to go beyond its primary use case of supplying packages for testing to a Jamf Pro instance, with policies in a specific form.

I ended up taking over its maintenance, which had otherwise stalled, and this helped us a bit, as I was able to tweak it a little to suit our needs to some extent.

But as we continued to scale up, and as the world moved on with things like python 2 deprecation, I have become more frustrated with JSSImporter, and not really been able to conceptualise a good evolution for it. I needed something more flexible and, frankly, easier to maintain.

🍎 So, I eventually bit the bullet, and wrote a new set of processors that I collectively call JamfUploader. We've been using these in production for almost a year now, and I'm transitioning all my recipes to .jamf recipes to use the new processors.

This presentation is not going to concentrate on those processors. Anthony Reimer and I have recorded a presentation about JamfUploader for the Virtual JNUC Conference this year, which will air in just a couple of weeks' time, on October 21.

JamfUploader
Firefox.jamf

Just very briefly for context, because you'll see them crop up during the session, they are a suite of processors to make individual requests to the Jamf Pro APIs to achieve single tasks like upload a package, a script or a policy, for example.

Unlike JSSImporter, which has to be installed as a separate package on top of AutoPkg, JamfUploader processors are ordinary Shared Processors which require no installation. You just use the ones you need for your recipe.

I do encourage any of you currently using JSSImporter to check out this project. Since I am the maintainer of both, you can guess which one is going to get more maintenance in the future.

JamfCategoryUploader

JamfExtensionAttributeUploader

JamfPackageUploader

JamfScriptUploader

JamfComputerGroupUploader

JamfPolicyUploader

JamfComputerProfileUploader

OK, so back to our automation. There's two parts to the automation that we have built that I would like to talk about today. The first is the process of promoting a software title from test to production,

🍎 The second is the process of duplicating any changes across all our multiple Jamf Pro instances.

At the end, I'll mention some challenges we've encountered, and things we are still trying trying to optimise.

(Slide from my 2019 JNUC talk "Jamf and AutoPkg")

First, I'll talk about the process of promoting from test to production.

This is a slide from my 2019 JNUC presentation about using Jamf and AutoPkg together. It shows the usual workflow, where information from processors in download recipe is output and used by processors in the PKG recipe, and in turn, that information is used in a JSS recipe.

Normally, the only information that the JSS recipe needs from the parent recipes are the package path in the AutoPkg cache, the package name, and its version.

For example, 🍎 with one of our jss or jamf recipes, the package path value is used by JSSImporter or the new JamfPackageUploader processor, to upload the package into Jamf.

The package name is added to the new testing policy,

And the version string is added to a smart group, which determines if the new, untested version of the application is already installed or not.

🍎 In our case we are generating a regex based on the version string, which matches this version and any conceivable newer version. This ensures package installation attempts are only scoped to computers with an older version, rather than any computer that has a different version newer or older.

If you're interested in how to go about this, checkout my presentation links for Bill Smith's CurrentVersionOrHigher bash script, or my VersionRegexGenerator AutoPkg processor.

In our production policies, we also need the package name and version.

🍎 The package has to be added to the relevant policy, in our case the "Install Firefox" policy, and since we are also showing a notification to end users about which version is being installed, so 🍎 we need the version string here too.

Everything else in this policy is static.

And we need to put the correct version string into a smart group that determines if the current production version is already installed. 🍎 Again, here we are deriving a regex from that version string.

The important thing to note here, is that for production policies, we need the package name and version, but we don't need to upload the package itself. The package is already in Jamf Pro, of course, as it was already uploaded for testing.

So we don't want to go through the whole process of re-downloading the installer, packaging it up again, and uploading it to Jamf again.

But how can we get the package name and version string without running the download and PKG recipes again?

Well, I did figure out a way. This is one of the processes that I've changed over time, but I'll explain the two different solutions that I've used, because one or other might suit others' workflows better.

🍎 This is the folder structure of the AutoPkg cache. We're looking here at the cache of the Firefox.jss recipe.

🍎 Each recipe run generates a receipt, which is named after the recipe's identifier, with a date string added.

🍎 And if we take a quick look inside one of them, you can see that the receipt is a plist file which contains comprehensive output of the recipe, including any output values from each processor.

🍎 We can use this receipt's contents to get the name and version of the package, plus any other information that might be useful for the policies we want to write for promoting to production.

Input variables

name:

required: True

description: This value should be the same as the
NAME in the recipe from which we want to read the
receipt. This is all we need to construct the override
path.

cache_dir:

required: False

description: Path to the cache dir.

default: ~/Library/AutoPkg/Cache

JSSRecipeReceiptChecker

Output variables

pkg_path:

description: Value of pkg_path obtained from the latest
receipt.

version:

description: Value of version obtained from the latest
receipt.

So, for my first attempt, I decided to write a shared processor which finds the latest receipt by date from the Cache folder, and then parses the receipt for the package name and version.

With this approach, a production jss recipe 🍎 doesn't need a parent recipe.

🍎 The first process in the recipe is the JSSRecipeReceiptChecker processor. This processor outputs the package name and version, and these values are used in the JSSImporter processors below.

The challenge for this approach is that every recipe run generates a receipt, even if no package is generated or uploaded.

If no package is generated, the receipt does not contain any information about the package.

So, the JSSRecipeReceiptChecker processor has to iterate back in time through all previous receipts until it eventually finds the last run that created a package.

If no new version appears for a long time, this process takes longer and longer as it has to read more files until it gets the values required.

And it won't work if you clear out your cache all the time.

Nonetheless, we used this pretty successfully with our prod jss recipes for a couple of years.

As I transitioned to using JamfUploader, I decided to take another look at this workflow, and came up with an alternative.

JSSRecipeReceiptChecker: Checking: Unarchiver
JSSRecipeReceiptChecker: Checking: CodeSignatureVerifier
JSSRecipeReceiptChecker: Checking: StopProcessingIf
JSSRecipeReceiptChecker: No version found in receipt
JSSRecipeReceiptChecker: Receipt: /Users/Shared/Jenkins/Library/AutoPkg/Cache/local.jss.Atom/receipts/Atom-
receipt-20210830-160611.plist
JSSRecipeReceiptChecker: Checking: URLDownloader
JSSRecipeReceiptChecker: Checking: EndOfCheckPhase
JSSRecipeReceiptChecker: Checking: Unarchiver
JSSRecipeReceiptChecker: Checking: CodeSignatureVerifier
JSSRecipeReceiptChecker: Checking: StopProcessingIf
JSSRecipeReceiptChecker: No version found in receipt
JSSRecipeReceiptChecker: Receipt: /Users/Shared/Jenkins/Library/AutoPkg/Cache/local.jss.Atom/receipts/Atom-
receipt-20210827-151058.plist
JSSRecipeReceiptChecker: Checking: URLDownloader
JSSRecipeReceiptChecker: Checking: EndOfCheckPhase
JSSRecipeReceiptChecker: Checking: Unarchiver
JSSRecipeReceiptChecker: Checking: CodeSignatureVerifier
JSSRecipeReceiptChecker: Checking: StopProcessingIf
JSSRecipeReceiptChecker: Checking: PkgRootCreator
JSSRecipeReceiptChecker: Checking: Unarchiver
JSSRecipeReceiptChecker: Checking: Versioner
JSSRecipeReceiptChecker: Checking: PkgCreator
JSSRecipeReceiptChecker: Checking: JSSImporter
JSSRecipeReceiptChecker: Version: 1.60
JSSRecipeReceiptChecker: Package: /Users/Shared/Jenkins/Library/AutoPkg/Cache/local.jss.Atom/Atom-4.67.pkg
JSSRecipeReceiptChecker: Category: Productivity
JSSRecipeReceiptChecker: Self Service Description: Atom is a text and code editor produced by GitHub.

Input variables

RECIPE_CACHE_DIR:

required: True (assumed from AutoPkg)

description: AutoPkg Cache directory.

output_file_path:

required: False

description: Full path name to write JSON file of results
to.

default: RECIPE_CACHE_DIR

output_file_name:

required: False

description: Name of output file.

default: latest_version.json

url:

LastRecipeRunResult

Output variables

url:

description: The value of url from the recipe run.

pkg_path:

description: The value of pkg_path from the recipe run.

pathname:

description: The value of pathname from the recipe run.

version:

description: The value of version from the recipe run.

PKG_CATEGORY:

description: The value of PKG_CATEGORY from the
recipe run.

SELFSERVICE_DESCRIPTION:

description: The value of

This second method involves two processors.

The first processor is a post-processor called LastRecipeRunResult, and is designed to run at the end of a jamf recipe, the one that obtains new package installers for testing. I'll call these recipes "testing jamf recipes" from now on.

This processor takes the package name and version, plus other values that are useful to us, and writes them to a JSON file in the Recipe Cache directory.

Because these values are always written to the same file, we don't have to search through multiple files back in time to find the latest values. And it's easier to parse, because we are only collecting the values that are useful to us.

Note that this processor is agnostic to Jamf, I know of at least one organisation using this as a post-processor for PKG recipes, to integrate with their own completely different deployment system.

Input variables

recipeoverride_identifier:

required: True

description: The identifier of the recipe from which the
information is required.

cache_dir:

required: False

description: Path to the cache dir.

default: ~/Library/AutoPkg/Cache

info_file:

required: False

description: Name of input file.

default: latest_version.json

LastRecipeRunChecker

Output variables

url:

description: The value of url from the recipe run.

pkg_path:

description: The value of pkg_path from the recipe run.

pathname:

description: The value of pathname from the recipe run.

version:

description: The value of version from the recipe run.

PKG_CATEGORY:

description: The value of PKG_CATEGORY from the
recipe run.

SELFSERVICE_DESCRIPTION:

description: The value of

The second processor is called LastRecipeRunChecker, and this reads the values from the JSON file, so can be run as a pre-processor.

I use this with our prod jamf recipes. Just as with the older prod JSS recipes, we don't need a parent recipe.

🍎 I supply the recipe identifier of the testing jamf recipe, which tells the processor where to look for the correct JSON file.

I place the processor as the first process in a prod jamf recipe, and the values outputted are used in the subsequent processors.

As the last process in the prod jamf recipes, I use a processor called JamfPolicyDeleter to remove the Self Service testing policy, which we don't want anymore.

Package deployment workflow

{AutoPkg

{?

๏ Check for a new version of a software

๏ Download new version

๏ Verify security

๏ Repackage as necessary

๏ Upload package to Jamf Pro

๏ Create or update policies and smart groups targeted at testers

๏ Testers do the tests

๏ Create or update policies and smart groups available to  

 production computers

๏ Delete the testing policies

So now we have recipes for bringing in new packages for testing, 🍎 and for staging them to production.

But hold on - 🍎 how do we know when a package is ready for production, and more importantly how do we automate the process of staging at the right time?

We could just run recipes manually when it has been determined that something is ready for production, but that also can get difficult to keep up with, so we wanted to automate this step as well.

Package deployment workflow

{AutoPkg

{AutoPkg

๏ Check for a new version of a software

๏ Download new version

๏ Verify security

๏ Repackage as necessary

๏ Upload package to Jamf Pro

๏ Create or update policies and smart groups targeted at testers

๏ Testers do the tests

๏ Create or update policies and smart groups available to  

 production computers

๏ Delete the testing policies

Package deployment workflow

{AutoPkg

{AutoPkg

?

๏ Check for a new version of a software

๏ Download new version

๏ Verify security

๏ Repackage as necessary

๏ Upload package to Jamf Pro

๏ Create or update policies and smart groups targeted at testers

๏ Testers do the tests

๏ Create or update policies and smart groups available to  

 production computers

๏ Delete the testing policies

Our small Apple Client Delivery team is not responsible for testing whether a new package functions properly or not - apart from a few core apps like browsers, we outsource that responsibility to our customers, who are closer to the users of these products. To aid in this process, we maintain a software catalogue
for our customers, on an internal 🍎 SharePoint site.

For all SharePoint's downsides, it does have an API. 🍎

So we can automate the filling in of information of each new version of a product into this SharePoint site.

Input variables

JSS_URL:

required: True

description: Jamf Pro server URL.

SP_URL:

required: True

description: SharePoint Portal URL.

SP_USER:

required: True

description: SharePoint portal username with read
privileges.

SP_PASS:

required: True

description: Password for the SharePoint portal

JamfUploadSharepointUpdater

Output variables

None

We do this with a processor I wrote called JamfUploadSharepointUpdater.

🍎 Always catchy with the titles.

Input variables

JSS_URL:

required: True

description: Jamf Pro server URL.

SP_URL:

required: True

description: SharePoint Portal URL.

SP_USER:

required: True

description: SharePoint portal username with read
privileges.

SP_PASS:

required: True

description: Password for the SharePoint portal

JamfUploadSharepointUpdater

Output variables

None

This is a post-processor, which we run at the end of our testing jamf recipes 🍎 It updates the SharePoint site with the new information required by the testers.

autopkg run Firefox.jamf

autopkg run Firefox.jamf
--post=com.github.eth-its-recipes.processors/JamfUploadSharepointUpdater

Our testers are alerted via email to the newly uploaded package, and one of them performs tests following a template that we generated in the SharePoint portal.

These tests include whether the application can be installed as a standard user, whether the item disappears from Self Service once it's installed, whether an uninstaller appears in Self Service, whether the uninstaller works properly, and some basic tests on whether the app functions.

When they have completed the test, they mark in our form whether it is Ready for Production or not. If not, they contact us to take another look at the recipe in case there's something that needs to be changed.

Input variables

JSS_URL:

required: True

description: Jamf Pro server URL.

SP_URL:

required: True

description: SharePoint Portal URL.

SP_USER:

required: True

description: SharePoint portal username with read
privileges.

SP_PASS:

required: True

description: Password for the SharePoint portal

JamfUploadSharepointStageCheck

Output variables

ready_to_stage:

description: Boolean value of whether the product is
ready to be promoted to production or not.

A second processor called JamfUploadSharepointStageCheck is added to the beginning of a prod jamf recipe to check the Sharepoint site and see if there is a new version ready to be released to production.

More specifically, it is inserted after the LastRecipeRunChecker processor.

🍎 The StopProcessingIf processor then tests whether previous processor determined that the app is ready to stage. If that is not the case, the recipe is stopped at this point, so the processes below are not run, which means the title is not promoted to production.

Finally, as a post-processor, 🍎 we call the JamfUploadSharepointUpdater once again, this time to mark in the SharePoint that the package has been Released to Production, and to update the production version string in our Content List.

autopkg run Firefox-prod.jamf

autopkg run Firefox-prod.jamf
--post=com.github.eth-its-recipes.processors/JamfUploadSharepointUpdater

Package deployment workflow

{AutoPkg

๏ Check for a new version of a software

๏ Download new version

๏ Verify security

๏ Repackage as necessary

๏ Upload package to Jamf Pro

๏ Create or update policies and smart groups targeted at testers

๏ Testers do the tests

๏ Create or update policies and smart groups available to  

 production computers

๏ Delete the testing policies

So with that in place, we have autopkg processors to do every single step of the package deployment workflow from download to promotion to production. 🍎

- URLTextSearcher

- URLDownloader

- CodeSignatureVerifier

- PkgCreator / PkgCopier

- JamfPackageUploader / LastRecipeRunResult

- JamfComputerGroupUploader / JamfPolicyUploader

- JamfUploadSharepointUpdater /
JamfUploadSharepointStageCheck

- LastRecipeRunChecker / JamfComputerGroupUploader /
JamfPolicyUploader

- JamfPolicyDeleter

Package deployment workflow

{AutoPkg

This is all the processors - the first set are the core AutoPkg processors of the download and pkg recipes, and the rest are shared processors that I've developed at ETH.

Package deployment workflow

๏ Check for a new version of a software

๏ Download new version

๏ Verify security

๏ Repackage as necessary

๏ Upload package to Jamf Pro

๏ Create or update policies and smart groups targeted at testers

๏ Testers do the tests

๏ Create or update policies and smart groups available to  

 production computers

๏ Delete the testing policies

{AutoPkg

To move on to the second section of this presentation, a reminder that at ETH, we don't have only one Jamf instance, we have many, and all these need the new untested versions of software titles to be added, and all of them need the production policies at the right time.

Template

Test Production

Template

As a brief overview of our setup, we maintain template Jamf Pro instances in our test and production systems, which have no clients enrolled to them, and are not accessible by any customers. We use these as the source of truth for our centrally provided content.

🍎 Our test system has a few instances, for testing current and beta Jamf versions and to allow some of our customers to test stuff out too.

🍎 On the production side, we have all our customers' main instances, as well as an instance for our own team's productive Macs.

🍎 The test system and the production system each have a single FileShare Distribution point for all instances. We decided early on in designing our Jamf Pro architecture that it would not make sense for each instance to have its own entire repo.

Template

Test Production

TemplateInternal

Customer playground

Internal beta

Template

Test Production

TemplateInternal

Customer playground

Internal beta

Internal

Customer 1

Customer N

Template

Test Production

TemplateInternal

Customer playground

Internal beta

Internal

Customer 1

Customer N

As part of the original infrastructure setup, I wrote a bash script for copying API objects from one instance to another instance, or more than one, or all other instances using the API.

The script is pretty complex, because it makes a very serious attempt to figure out all the dependencies of the object that you want to copy, and copies them all in the correct order so that conflicts don't happen.

It also has to know which smart groups should not be overwritten because they are the ones our customers edit directly.

It's mainly for that latter reason that I've never considered putting this script in a public repo, because it's very specifically designed for our workflow.

This script was our original way of promoting a title to production. It had options to create or update all the smart groups and policies required. However, this became too hard to manage once we scaled up and encountered more and more exceptions to the standard pattern, and that's when we needed to start to
use AutoPkg recipes for creating and updating production policies.

But the script is still used for copying individual objects like a single policy and all its dependencies.

Enter the destination server name (or enter for 'prd') :

Enter the destination JSS instance name(s) to which to upload API data

 or press enter for 'template',

 or enter 'ALL' to propagate to all destination instances ('template' will be checked for
the policy's existence).

 or enter a slash ('/') for a non-context JSS : ALL

 [main] Destination Jamf Pro Server: 'prd'

API object type options:

 A - [A]dvanced Computer Search

 C - [C]onfiguration Profile

 U - Configuration Profile - specify UUID to rescue orphan profile

 E - [E]xtension Attribute

 G - Computer [G]roup

 M - [M]ac App Store App

 I - [i]OS App Store App

 P - [P]ackage object

 R - [R]estricted software

 S - [S]cript

 T - Ca[T]egory

 L or leave blank for Po[L]icy

Enter a letter from the above options:

It can be run interactively, which is useful for ad hoc changes that we want to propagate across our instances, and it has a delete option, for things that we need to clean up, which of course happens from time to time, such as when obsolete applications need to be removed.

But it can also be run directly from the command line with arguments, which means it can be automated.

./jamf-api-tool.sh
 --keychain ${JAMF_KEYCHAIN_PASSWORD}
 --copy
 --server "our-prod-server"
 --policy "Install Firefox"
 --source "template"
 --dest "ALL"

Because of this, when we started to move to using AutoPkg for promoting software titles to production, I was able to write an AutoPkg 🍎 post-processor which shells out to bash to run the script with the correct parameters. It copies a policy and all of its dependencies from the template to all the destination
instances.

autopkg run Firefox.jss

autopkg run Firefox.jss
--post=ch.ethz.autopkg.postprocessors/Policytool

For recipes that contain multiple JSSImporter processors, we can't just add it to the command as a post-processor - the processor has to be added to the recipe itself after each of the JSSImporter processor steps, so that each individual policy and its dependencies get copied to the destination instances before the
recipe moves on to the next policy.

As our software portfolio continued to broaden, even copying policies became more difficult using a script, due to an increasing number of exceptions to the normal dependencies - we started to need to hard-code too many things in to the scriipt.

And shelling out from AutoPkg to a bash script never seemed like the best way to do the job.

Moving away from JSSImporter to using the new JamfUploader processors was an opportunity to look at how I could use the new processors in a way that meant I could run autopkg on each instance separately, rather than handing it over to an external script, meaning that individualities in recipes could be directly
implemented across all instances.

Template

Test Production

TemplateInternal

Customer playground

Internal beta

Internal

Customer 1

Customer N

Because we only have one File Share for the test and production systems, we don't want to upload the package again and again when running a recipe on every instance, as it's already there in the repo.

We only need to write the information or metadata about the new package to each instance, as well as updating the smart groups and policies to match what we did in the Template instance.

Thanks to the LastRecipeRunResult processor and the JSON file it produces, we already have the information about the package available.

So, I came up with a separate recipe type for running on the customer instances. I call this a "nodes" jamf recipe.

This contains all the same information as a testing jamf recipe, but like the prod jamf recipes, 🍎 it has no parent recipe. Instead, 🍎 we supply the identifier of the testing jamf recipe, so that we can get the package information from the correct JSON file.

Again, just like the prod jamf recipe, the first process is the LastRecipeRunChecker processor.

The StopProcessingIf process checks the value of the key called pkg_metadata_updated from the JSON file. It's set to true only when a package has just been updated. We do this because it speeds up the recipe run, because if the package metadata wasn't updated on the template instance when the testing jamf
recipe was run, chances are there's nothing else to change, so we can stop.

autopkg run Firefox.jamf

To make it possible to run AutoPkg on all the instances, we use a wrapper script to allow us to override the autopkg preferences key for the JSS server URL for each instance, and therefore run autopkg on all of the nodes in a loop.

In pseudo code, our workflow looks kind of like this:

The script runs the testing jamf recipe first

autopkg run Firefox.jamf

read $pkg_uploaded in latest_version.json

Then, to prevent unnecessary recipe runs, we check the JSON file to see if a package was uploaded or not.

autopkg run Firefox.jamf

read $pkg_uploaded in latest_version.json

if $pkg_uploaded is True:

 nodes_list=(

 internal

 customer_1

 customer_2

 customer_3

)

If it was, we supply a list of the names of the nodes to iterate through,

autopkg run Firefox.jamf

read $pkg_uploaded in latest_version.json

if $pkg_uploaded is True:

 nodes_list=(

 internal

 customer_1

 customer_2

 customer_3

)

 for node in $nodes_list:

 autopkg run Firefox-nodes.jamf \

 --key JSS_URL="https://server:8443/$node"

And then run autopkg on each instance using a for loop, overriding the JSS_URL key with the correct URL each time.

nodes_list=(

 template

 internal

 customer_1

 customer_2

 customer_3

)

for node in $nodes_list:

 autopkg run Firefox-nodes.jamf \

 --key JSS_URL="https://server:8443/$node"

For our prod recipes, the recipe has no parent and doesn't upload the package, and also checks whether we are ready to stage to production or not, right there in the recipe, so we could just iterate through the template and all the nodes, running the recipe on each.

autopkg run Firefox-prod.jamf

However, to speed things up, the wrapper script first runs the recipe on the template instance only.

autopkg run Firefox-prod.jamf

read $stop_processing_recipe from StopProcessingIf in latest_receipt

Then, it reads the receipt of the recipe that just ran, to look for the result of the StopProcessingIf predicate.

If it finds that the value was true, then the wrapper script exits, preventing the recipe from running unnecessarily on all the other instances.

autopkg run Firefox-prod.jamf

read $stop_processing_recipe from StopProcessingIf in latest_receipt

if $stop_processing_recipe is False:

 nodes_list=(

 internal

 customer_1

 customer_2

 customer_3

)

for node in $nodes_list:

 autopkg run Firefox-prod.jamf \

 --key JSS_URL="https://server:8443/$node"

done

But, if the predicate was not matched, then we can supply the instance names and run the recipe on all of them.

 Firefox (Testing)

 Firefox

 Update Firefox

 Auto-install Firefox

 Auto-update Firefox

 Install Firefox

 Uninstall Firefox

 Trigger-uninstall Firefox

Jamf policies

 Firefox test users

 Firefox test version installed

 Firefox users

 Firefox auto-install

 Firefox auto-update

 Firefox current version installed

 Firefox installed

Jamf smart groups

I didn't talk about our uninstall policies yet, but these are also important to our customers, because when they provide their users with an application via Self Service, the expectation is that it can be installed by a standard user.

If that's the case, then the app should also be able to be uninstalled by a standard user. So, we need to provide properly scoped uninstaller policies to go in Self Service to achieve that, and just like the other policies, we need to automate their distribution.

So, we use recipes for this too.

A jamf uninstaller policy rarely uses an uninstaller package. Normally we use a script to perform the uninstallation.

We can use the same script for many uninstaller policies, since a lot of apps are just an application bundle in the Applications folder, so the process of removing it is the same except for the name of the app, and the package receipt name if you want to remove that too.

In such a recipe, we just supply 🍎 the name and path of the common script we want to use, 🍎 any parameter labels we would like to add to the script, and the values of those parameters we want to set in the policy, in this case the 🍎 app name, and 🍎 the package receipt's name.

The processes in such a recipe 🍎 create or update the script, 🍎 the policies, and 🍎 any dependent smart groups.

nodes_list=(

 template

 internal

 customer_1

 customer_2

 customer_3

)

for node in $nodes_list:

 autopkg run Firefox-uninstall.jamf \

 --key JSS_URL="https://server:8443/$node"

As the uninstaller recipes have no parent, and we don't need to update them regularly, we can just run our wrapper script manually when we need to make a change to an uninstaller. It doesn't need to be scheduled.

So, this is the simplest of our wrapper scripts - it can just iterate through the template and customer instances without any checks.

To schedule the verification and running of our testing, nodes and prod jamf recipes, we use GitLab Runner to manage the scheduling. We use this because it is available to us on premises, but I know that a lot of people use 🍎 GitHub's runner, and I believe it works in a very similar way.

These tools are most often used for compiling and building software, but they include some useful features for running any scheduled task.

One of the most useful features for us is the opportunity to store secrets securely in the repo that we need to supply to autopkg, particularly the API account details for connecting with Jamf and SharePoint.

If you want to know more about how we do this, I wrote a blog post about it some time ago, and I will include a link to this in the presentation links.

I do have to mention that running this number of AutoPkg recipes daily has brought some challenges.

When I moved away from using my shell script to distribute policies to all the instances, to running the autopkg recipe on every instance, the total length of the jobs increased massively.

In fact, including the additional steps we make to verify trust, the total run time started easily exceeding 24h, so I couldn't even maintain a daily schedule anymore.

I suppose it was never envisaged that you would scale up to thousands of autopkg commands in one scheduled job, which we are now doing with over 100 software titles, and the nodes and prod recipes running 35 times each.

That's one of the risks of using a framework beyond its conceived use cases.

Optimising the AutoPkg run schedules

I still think it has been worth it, and I have got some way towards optimisations that are speeding up the jobs.

These include:

★ Various tricks in the wrapper scripts, some that I showed earlier, to prevent recipes from running on all instances when we can determine externally that there's nothing to update

★ Taking out software from the main recipe lists that is less important or infrequently updated - it's not really worth running a recipe every night when you know from experience that it's only updated once or twice a year. However, I haven't yet found a way to set multiple schedules using GitLab Runner, so it

requires a bit of extra scripting to achieve.

★ I have found out that the length of time taken for AutoPkg to prepare before a run really gets going is heavily influenced by the number of repos you have added to your Recipe Search List. This can have an influence of more than a minute per single autopkg run command. But our prod and nodes recipes don't

have any parents, and they are all in the same single repo. So, I started to use a separate prefs file for these runs, which does not contain any other repos than ours. This had a huge effect on the total run time,

★ Finally, I did some tests on our first M1 hardware, and autopkg runs were twice as fast as on the Intel T2 Mac minis we are currently using. So, we are migrating to M1 minis imminently.

 Preventing unnecessary recipe runs via the wrapper scripts

Optimising the AutoPkg run schedules

 Preventing unnecessary recipe runs via the wrapper scripts
 Separate recipe-lists and schedules for critical, frequently 
 updated and infrequently updated software

Optimising the AutoPkg run schedules

 Preventing unnecessary recipe runs via the wrapper scripts
 Separate recipe-lists and schedules for critical, frequently 
 updated and infrequently updated software
 Rationalised preferences file for -prod and -nodes recipes

Optimising the AutoPkg run schedules

 Preventing unnecessary recipe runs via the wrapper scripts
 Separate recipe-lists and schedules for critical, frequently 
 updated and infrequently updated software
 Rationalised preferences file for -prod and -nodes recipes
 M1 hardware

Optimising the AutoPkg run schedules

Conclusion
Conclusion

To conclude.

🍎 AutoPkg's core processors do a great job of packaging up software.

It's straightforward to set up and to schedule, either with AutoPkgr, a script and launchdaemon solution such as Rich Trouton's AutoPkg-conductor, or a CI/CD tool like GitLab, GitHub or Jenkins.

So, in my opinion there's no better tool to use for preparing software for deployment.

Conclusion
Conclusion

Conclusion
Conclusion

Conclusion
Conclusion

Conclusion
Conclusion

Conclusion
Conclusion

And if you are using AutoPkg, and especially if you have already got used to 🍎 writing recipes and perhaps 🍎 custom processors for solving individual software packaging issues, then it's worth thinking about the parts of your workflow that are not yet automated.

Perhaps writing your own AutoPkg processors would a good solution, so that you can integrate more steps into a single workflow.

Conclusion
Conclusion

Conclusion
Conclusion

At ETH, the use of AutoPkg processors has helped consolidate what was a bunch of disparate scripts or manual processes into a single, integrated Mac software deployment solution, with all these processors in daily use.

All of these are publicly available in GitHub, either for direct use, or just for getting some ideas for processors that would work better in your own organisation's workflow.

JamfCategoryUploader

JamfExtensionAttributeUploader

JamfPackageUploader

JamfScriptUploader

JamfComputerGroupUploader

JamfPolicyUploader

JamfPolicyDeleter

JamfComputerProfileUploader

JamfUploadSlacker

VersionRegexGenerator

JSSRecipeReceiptChecker

LastRecipeRunResult

LastRecipeRunChecker

JamfUploadSharepointUpdater

JamfUploadSharepointStageCheck

InternalUpdateChecker

LocalRepoUpdateChecker

SMBMounter

SMBUnmounter

Conclusion

Most of them are available in my recipes repo inside the autopkg organisation, including the JamfUploader processors.

The rest are in the ETH-ITS organisation.

Conclusion

github.com/autopkg/grahampugh-recipes

Conclusion

github.com/autopkg/grahampugh-recipes

github.com/eth-its/autopkg-mac-recipes-yaml

Conclusion
One More Thing...

One more thing...

My colleagues in the ETH Client Delivery Windows team, especially Nick Heim, also saw the benefit of the AutoPkg framework for their software deployment needs.

So much so, that Nick decided to fork 🍎 AutoPkg for 🍎 Windows!

With 30 shared processors, and 🍎 working recipes for downloading, packaging and deploying close to 100 software titles, ETH really does use AutoPkg for everything.

Conclusion
One More Thing...

Conclusion

github.com/NickETH/autopkg

One More Thing...

Conclusion

github.com/NickETH/autopkg

github.com/NickETH/recipes-win

One More Thing...

https://grahamrpugh.com/2021/10/05/
macsysadmin-presentation.html

MacAdmins Slack:

@GrahamRPugh

#macsysadminconf

#jamf-upload

#jss-importer

#eraseinstall

#switzerland

Resources and Questions

Thank you for listening to how we are using AutoPkg at ETH.

Links to everything I've mentioned today are in a blog post at the link shown here, or just go to graham-r-pugh dot com

And you'll find me in Slack as @GrahamRPugh, of course in the macsysadminconf channel, but also often hanging about in these channels.

If I've given anyone some ideas about how to take AutoPkg further in their own organisation, then this has been a useful endeavour.

On the other hand, if you have any ideas for us to improve, please get in touch.

If you just think we are mad to go this far with AutoPkg, which could be true, then I'd love to hear about how others are doing this kind of thing in a Jamf-only environment, particularly in complex or multi-tenancy contexts.

Thanks again, and I hope to see many of you at an on-premises conference hopefully in 2022!

