
AutoPkg recipes in YAML

Texas Apple Admins March 2021 Virtual Meetup

Graham Pugh
Senior Client Engineer - Apple Services

ETH Zürich

@GrahamRPugh

@GrahamRPugh

@grahampugh

grahamrpugh.com

My name is Graham, I'm from the UK, and I work in Switzerland at a technical university called ETH Zürich.

I'm going to talk briefly today about how you can write AutoPkg recipes in YAML.

I've been using AutoPkg for about 7 or 8 years, writing PLIST based recipes almost from the beginning, and for the past 3 years I have been writing my AutoPkg recipes in
YAML, and then converting them to PLIST for use.

But as of AutoPkg version 2.3, thanks to the work of Elliot Jordan, YAML-formatted recipes can be run directly from AutoPkg.

It's fair to say that YAML has a lot of haters.

The Suez meme has made it to YAML haters.

Read this out

Read this out

Read this out

Pause

Pause

Pause

My favourite from Ben Toms (read out)

Ansible

However, YAML is a widely used markup language, especially with configuration tools.

Kubernetes

This is due to the simplicity and ease of readability.

Docker

YAML essentially has the same data structure as JSON and PLIST, but instead of using different types of bracket like JSON, or markup like XML, it mainly just uses
indentation.

GitLab Runner/GitHub Actions

This makes it much more clear to read.

It's the same design concept as python.

And some people hate Python and YAML, because dealing with whitespace and indentation does require discipline and the right text editor.

But if you are already familiar with dealing with whitespace through python programming or writing YAML config files, or if you're just willing to give marzipan another try,
writing AutoPkg recipes in YAML might make sense for you.

Let's look at a simple AutoPkg recipe written in Plist format.

-What we see are key name/value pairs written over two lines, such as the Description, Identifier and MinimumVersion keys.

-The types of value are indicated by the markup. In AutoPkg recipes this is almost always string or boolean (true/false).

-Other values include:

-dictionaries, such as the Input dictionary.

-This is an unordered list of keys and their values.

And

-arrays, which are an ordered list.

- In this case the Process array is an ordered list of dictionaries. In AutoPkg this has to be ordered as each Processor is run in a sequence.

Occasionally you will also see arrays of strings, such as like here in the PathDeleter processor, where the recipe is required to remove files and folders in a particular
sequence.

Now let's compare that with a recipe in a YAML format.

You can see instantly the first benefit of using YAML - the recipe is much shorter.

In YAML format, the key name comes before a colon and a space. The value after the colon and space.

Type is inferred.

- If the value is clearly not an integer, floating number or boolean, it is interpreted as a string.

-This means that you occasionally have to take care to specify something as a string by putting it in quotes, such as here where the MinimumVersion is 2.3 which

looks like a floating number, but AutoPkg expects to be a string.

A dictionary value is represented by indenting each of the key pairs in the dictionary by two spaces.

Array items are represented by a dash indented by two spaces.

Here we see the 3 processor dictionaries in an array.

And here is that array of paths to be deleted in the PathDeleter processor.

YAML doesn't care about spaces between items. The order of lists is also unimportant, except for items in arrays.

So what I do to make the YAML recipes even nicer to read is to move the Description, Identifier and Minimum Version to the top, add spaces between the Input and
Process sections, and a space between each process.

Another benefit of YAML recipes over PLISTs is that fewer things need to be escaped.

Here's a URLTextSearcher process with a regex pattern key in a PLIST-based recipe.

We have to escape the less-than and greater-than signs in the pattern to prevent these being interpreted as XML code.

But in YAML, no escaping is necessary.

Here's an example of a FileCreator process, where the file being written is a PLIST.

Note that in YAML files, multiline string blocks can be represented by a pipe sign, followed by a line break.

The contents of the string block must be indented two spaces from the key.

None of the markup in the file needs to be escaped.

Inevitably, this is messy and hard to read and write in a PLIST-formatted recipe...

If you are creating scripts with the FileCreator processor, things like less-than, greater-than signs and ampersands do not need to be escaped.

This means you can copy and paste the tested script into the YAML file, and all you have to do is indent it all to the correct level, which is easy in a good text editor like
Visual Studio Code, Atom or BBEdit.

A couple of quick things to note about YAML:

- We already mentioned that some string values that look like numbers may need to be quoted. Here you see the octal permissions in the PkgRootCreator in quotes for
example.

-Occasionally you can come across key names that require quotes, such as when creating subfolders in the PkgRootCreator processor.

-You also note that the AutoPkg variables with percent signs are quoted in my recipes. This isn't actually necessary as far as AutoPkg or YAML is concerned, but the

text editors I've used don't seem to like it if I don't.

% autopkg new-recipe TEMP.download.recipe.yaml

 --format=yaml

If you want to try writing recipes in YAML format from scratch,

you can easily create a template for a new recipe with autopkg's new-recipe argument.

% autopkg make-override DupeGuru.download --format=yaml

You can also make your recipe overrides in YAML format, using the format=yaml argument.

Note that a PLIST recipe override takes precedence in the search order, so don't forget to delete your old override if you switch formats on the same device.

• YAML-based recipes must end in .recipe.yaml

• MinimumVersion should be 2.3

• Parent and child recipes, and overrides, can be in different
formats

• .recipe files take precedence over .recipe.yaml in the search
order

• .recipe.plist is now also a valid file suffix for PLIST-based
recipes

Here's some more hints...

(Explain why minimum version is 2.3)

github.com/grahampugh/plist-yaml-plist

• If you want to convert an existing AutoPkg recipe to YAML format, or indeed a YAML format recipe to PLIST, you can use a tool I made called plist-yaml-plist

% plistyamlplist /path/to/Some.recipe  
 /path/to/Some.recipe.yaml

% plistyamlplist /path/to/Some.recipe.yaml  
 /path/to/Some.recipe

After installing the package, you just use the plistyamlplist command and provide the source and destination paths.

The tool will convert in both directions, based on the filenames.

There's a bunch of other options in this tool for converting entire folders and prettifying existing YAML recipes.

Conclusions

• AutoPkg version 2.3 supports YAML-format recipes

• YAML-format recipes are shorter and easier to read and write

• PLIST- and YAML-format recipes can be used
interchangeably

• Marzipan is exceedingly good

Thank You!

That's all from me, thank you for listening!

